

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### IR-Spectral Study of Self-Association Effects of 2-Aminopyridine in Solution

M. Arnaudov<sup>a</sup>; Sh. Dinkov<sup>a</sup>

<sup>a</sup> University of Sofia, Department of Chemistry, Sofia, Bulgaria

**To cite this Article** Arnaudov, M. and Dinkov, Sh.(1998) 'IR-Spectral Study of Self-Association Effects of 2-Aminopyridine in Solution', *Spectroscopy Letters*, 31: 8, 1687 — 1703

**To link to this Article: DOI:** 10.1080/00387019808007446

**URL:** <http://dx.doi.org/10.1080/00387019808007446>

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## IR-SPECTRAL STUDY OF SELF-ASSOCIATION EFFECTS OF 2-AMINOPYRIDINE IN SOLUTION

**Key words:** IR-spectra, 2-Aminopyridine, Self-association in solution

***M. Arnaudov and Sh. Dinkov***

*University of Sofia, Department of Chemistry,  
1, J. Bourchier Blvd., 1126 Sofia, Bulgaria*

### **ABSTRACT**

A comparative IR-spectral study of solute-solute hydrogen bond formation in carbon tetrachloride and chloroform solutions of 2-aminopyridine is reported. The presence of chain-like self-associates is confirmed in contrast to the solid state where the stabilization of the cyclic dimeric structure takes place. This conclusion is suggested on the basis of the NH<sub>2</sub> stretching region data obtained by changing the solute concentration as well as by comparing with the corresponding data about melted and solid state 2-aminopyridine and 3-aminopyridine samples.

## INTRODUCTION

In recent papers <sup>1, 2</sup> we have discussed the results obtained in our comparative IR- and UV-spectral study on Pd (II) complexes with 2-amino-pyridine (2-AP), synthesized both in sulphuric acid and in alkaline solution. It was found that sulphato-2-aminopyridine-palladium complex exhibits a polynuclear structure as a result of the bridging bidentate co-ordination of both sulphato group and 2-AP. The complex keeps its structure in alkaline medium, in which the substitution of  $\text{SO}_4^{2-}$  by  $\text{OH}^-$  yields hydroxo-2-amino-pyridine-palladium complex.

In principle 2-AP exhibits a monodentate co-ordination via the pyridine nitrogen because of its considerably greater electron-donating power than the amino group <sup>3</sup>. The formation of additional  $\text{Pd}^{2+} \leftarrow \text{N}(\text{amino})$  dative bond by a bidentate 2-AP complexation should specifically affect the  $\text{NH}_2$  characteristic frequencies, but the wide overlapping bands in the 3700-3100  $\text{cm}^{-1}$  spectra of both sulphato- and hydroxo-2-amino-pyridine-palladium (II) are not suitable for  $\text{NH}_2$  stretching bands identification <sup>1</sup>. Similarly, the bending  $\text{NH}_2$  mode ( $\delta \text{NH}_2$ ) appears in the 1635-1595  $\text{cm}^{-1}$  range <sup>2</sup> with a low intensity peak additionally overlapping with the pyridine skeleton band at about 1600  $\text{cm}^{-1}$ .

The data discussed refer to the solid state IR-spectra of the complexes where the supplementary association effects should be also manifested. 2-AP itself forms cyclic dimers in the solid state <sup>4</sup> (Scheme I) which give the characteristic peculiarity of the corresponding IR-spectrum (see below). This structure does not exist after complexation, but the possibilities of additional chain-like  $\text{NH} \dots \text{N}(\text{amino})$  bond formation in the case of monodentate 2-AP co-ordination as well as the existence of  $\text{NH} \dots \text{O=S}$  and  $\text{NH} \dots \text{OH}$  hydrogen bonds in the complexes investigated by us are likely.

For these reasons, the present paper deals with the IR-spectral investigation on the solute-solute hydrogen bond formation in carbon tetrachloride and chloroform solutions of *2-AP* where we have found the presence of chain-like self-associates. This conclusion is suggested on the basis of the  $\text{NH}_2$  stretching region data obtained by changing the solute concentration and by comparing with the IR-spectra of melted and solid state *2-AP* and *3-aminopyridine (3-AP)* as well.

The study is restricted by the low solubility of the compounds in carbon tetrachloride in which the solvent effects are negligible. Both *2-AP* and *3-AP* are soluble in chloroform, but weak specific solute-solvent interaction has been reported about *2-AP* diluted solutions in this solvent <sup>5</sup>. Furthermore, the enhanced chloroform polarity shifts the equilibrium between the monomeric and self-associated solute molecules to the free species. Hence, the results obtained about dilute chloroform solutions are not easy for interpretation and we discuss only the data about 1 M and 5 M solute concentration.

## EXPERIMENTAL

*2-AP* and *3-AP* (Fluka, purum), recrystallized from n-hexane were used. Spectral quality solvents (Uvasol, Merck) were employed and only triethylamine (Carlo Erba, purum) was additionally redistilled and dried over molecular sieves.

A Bomem-Michelson 100 spectrometer served as an IR-instrument. The following sample cells were used: 5 cm quartz for the dilute ( $\leq 0.0005$  M) carbon tetrachloride solutions of *2-AP* and *3-AP*; 0.01 cm KBr for 0.1 M and 0.5 M solute concentration in various solvents; 0.002 cm KBr for 1M and 5 M solutions in chloroform.

The IR-spectra of the melted samples were obtained by 80° C heating between KBr plates. The solid state 2-AP- and 3-AP spectra were recorded as Nujol mulls and from melt crystallized film as well.

The curve fitting was performed with the program Spectra Calc.

## RESULTS AND DISCUSSION

IR-spectral data of 2-AP including a normal coordinate treatment <sup>6</sup> have been reported by a great number of authors <sup>7-15</sup>, but no detailed analysis on hydrogen bond formation has been worked out. *Sugeta* has developed a calculation procedure for spectrophotometric determination of molar absorption coefficients of constituent species in a multicomponent equilibrium system which is applied to IR-spectral analysis of 2-AP self-association in 0.1 M and 0.5 M carbon tetrachloride solutions <sup>16</sup>. The calculations prove that the dimerization could be predominating in the employed concentration range and by analogy with the results from X-ray study <sup>4</sup> a cyclic dimeric structure (I) is assumed. However, this conclusion is not acceptable, since the solution IR-spectra are markedly different from those in the solid state.

The pointed above X-ray investigation on the crystalline 2-AP structure suggests that the molecules are linked together in centrosymmetric dimers (I), without any additional NH...N(amino) hydrogen bond formation between the separate units <sup>4</sup>. On the basis of this assumption, the following assignment of the NH<sub>2</sub> stretching bands of the solid state IR-spectrum (Fig. 1.1 and Table 1) is available:

- The absorption maximum at 3446 cm<sup>-1</sup> corresponds to the antisymmetric stretch ( $\nu_{as}$  NH<sub>2</sub>). Compared to  $\nu_{as}$  NH<sub>2</sub> of the monomeric 2-AP at 3510 cm<sup>-1</sup> (Fig. 1.2 and Table 1), this value is 64 cm<sup>-1</sup> low-

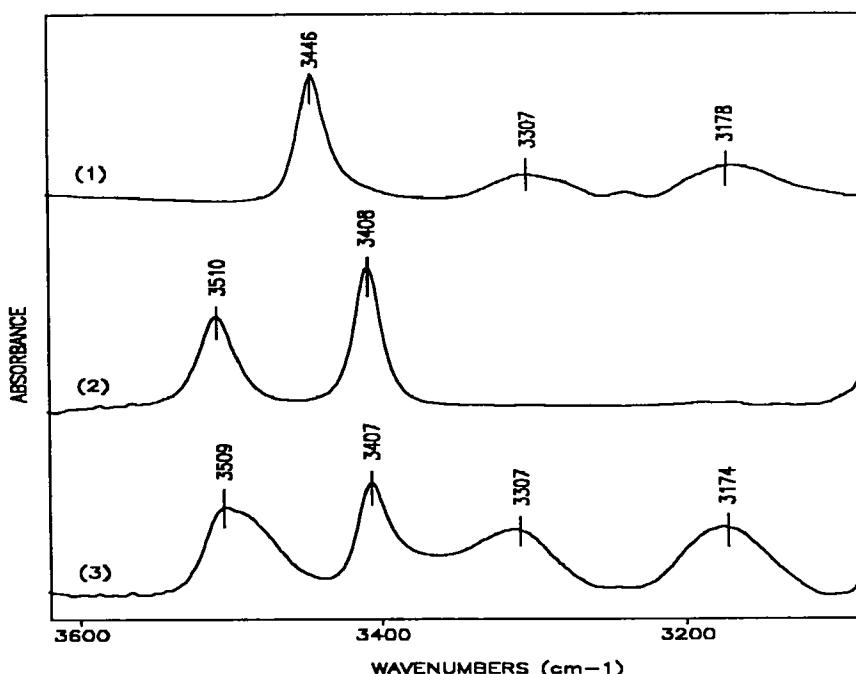
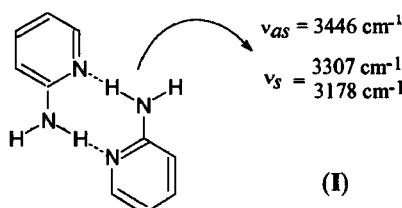



Fig. 1. IR-spectra of 2-AP: solid state, Nujol mull (1); solution in carbon tetrachloride, 0.0005 M (2) and 0.5 M (3)

frequency shifted. Similar  $\Delta\nu_{as} NH_2$  (69 cm<sup>-1</sup>) is observed by comparison of benzamide IR-spectrum in dilute carbon tetrachloride solution <sup>15</sup> with that in a melt, where cyclic dimerization without any additional interaction between the separate dimers also takes place <sup>17</sup>.

- The bands at 3307 cm<sup>-1</sup> and 3178 cm<sup>-1</sup> belong to the Fermi-doublet caused by a resonance between the symmetric NH<sub>2</sub> frequency ( $\nu_s NH_2$ ) of the dimeric 2-AP and its  $2\delta NH_2$  overtone. This effect is typical of NH...N hydrogen bond formation with the participation of NH<sub>2</sub> group <sup>16, 18-22</sup>. The frequencies and the intensities ratio of the discussed bands are used for the

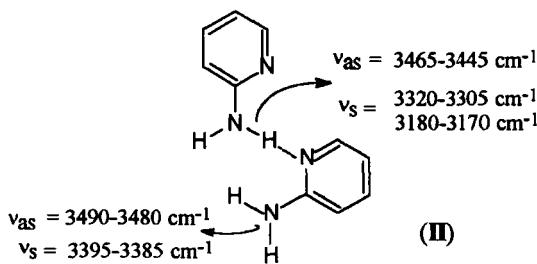

Table 1  
NH<sub>2</sub> stretching frequencies (cm<sup>-1</sup>) of 2-Aminopyridine

| Solvent                      | Concen-<br>tration<br>(mol.l <sup>-1</sup> ) | Monomer      |           | Dimer        |           |              |           | Trimer       |           |           |
|------------------------------|----------------------------------------------|--------------|-----------|--------------|-----------|--------------|-----------|--------------|-----------|-----------|
|                              |                                              | $\nu_{ss}^f$ | $\nu_s^f$ | $\nu_{ss}^f$ | $\nu_s^f$ | $\nu_{ss}^b$ | $\nu_s^b$ | $\nu_{ss}^b$ | $\nu_s^b$ | $2\delta$ |
| carbon<br>tetra-<br>chloride | 0.0005                                       | 3510         | 3408      |              |           | 3311         | 3170      | 3232         | 3250      |           |
|                              | 0.1                                          | 3510         | 3408      | 3488         | 3393      | 3307         | 3174      | 3238         | 3249      |           |
|                              | 0.5                                          | 3509         | 3407      | 3489         | 3396      |              |           |              |           |           |
| chloro-<br>form              | 1                                            | 3510         | 3408      | 3488         | 3391      | 3465         | 3173      | 3238         | 3251      |           |
|                              | 5                                            | 3507         | 3405      | 3480         | 3384      | 3448         | 3177      | 3236         | 3248      | 3366      |
| triethyl-<br>amine           | 0.1                                          | 3508         | 3407      |              |           | 3480         | 3314      | 3174         | 3237      | 3252      |
|                              |                                              |              |           | 3465         | 3385      |              | 3310      | 3175         |           | 3370      |
| Liquid (melt)*               |                                              |              |           |              |           |              |           |              |           |           |
| Solid state                  |                                              |              |           |              |           | 3446         | 3307      | 3178         | 3236      | 3249      |
| nujol                        |                                              |              |           |              |           | 3446         | 3310      | 3180         |           |           |
| from melt *                  |                                              |              |           |              |           |              |           |              |           |           |

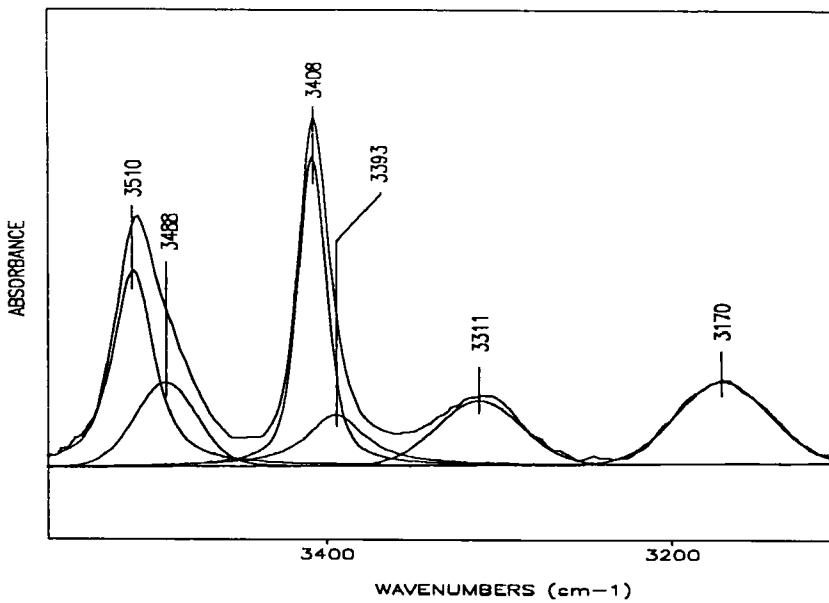
<sup>f, b</sup> - free and hydrogen bonded species, respectively, <sup>1, 2</sup> - experimental values of Fermi-resonance doublet;

<sup>0</sup> - calculated value of unperturbed  $\nu_s^b$  NH<sub>2</sub>;  $2\delta$  - calculated value of  $\delta$  NH<sub>2</sub> overtone; \* - without curve fitting

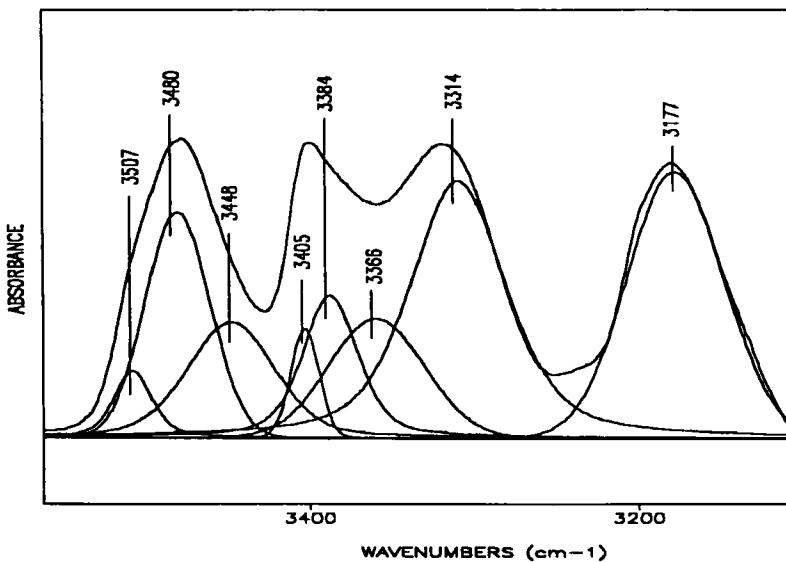
calculation of the unperturbed by Fermi-resonance symmetric  $\text{NH}_2$  vibration at  $3236 \text{ cm}^{-1}$  (Table 1), using the method applied by *Wolff* and *Horn* <sup>20</sup>. With respect to  $\nu_s \text{ NH}_2$  of the monomeric 2-AP at  $3408 \text{ cm}^{-1}$  (Fig. 1.2 and Table 1), this denotes a  $\Delta\nu_s \text{ NH}_2$  value of  $172 \text{ cm}^{-1}$ . The larger low-frequency shift of the  $\nu_s \text{ NH}_2$  band compared to the  $\nu_{as} \text{ NH}_2$  perturbation is in agreement with the fact that only one amino group hydrogen atom is involved in hydrogen bond <sup>18, 20-24</sup> (Scheme I).




The difference between 2-AP IR-spectra obtained in the solid state and in carbon tetrachloride solution is illustrated in Fig. 1. The self-association is not observed in solutions of 2-AP concentration below 0.001 M (Fig. 1.2), and the discussed absorption maxima at  $3510 \text{ cm}^{-1}$  and  $3408 \text{ cm}^{-1}$  characterize the  $\nu_{as} \text{ NH}_2$  and  $\nu_s \text{ NH}_2$  stretching frequencies, respectively, in the free species (see also <sup>5, 9, 16</sup>). The increasing concentration of the solute provokes the  $\text{NH} \dots \text{N}(\text{Py})$  intermolecular hydrogen bond formation leading to a broadening of the low-frequency flank of the  $\text{NH}_2$  monomeric bands as well as to the appearance of the Fermi-doublet absorption maxima (Fig. 1.3). The specification of these effects is obtained by an IR-spectral curve fitting of solutions with increasing solute concentration (Table 1). The following intensities changes are affected:

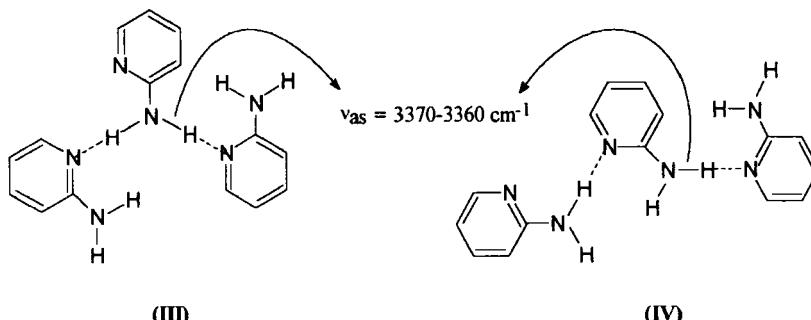

- Both the absorption maxima at  $3510\text{ cm}^{-1}$  and  $3408\text{ cm}^{-1}$  decrease while the Fermi-resonance doublet at  $3320\text{-}3305\text{ cm}^{-1}$  and  $3180\text{-}3170\text{ cm}^{-1}$  grows up in parallel with a new band pair at  $3490\text{-}3475\text{ cm}^{-1}$  and  $3396\text{-}3384\text{ cm}^{-1}$  (see Fig. 2). The  $\Delta\nu NH_2$  value ( $\Delta\nu NH_2 = \nu_{as} NH_2 - \nu_s NH_2$ ) of this slightly shifted band pair varies within  $90\text{-}100\text{ cm}^{-1}$  similarly to the  $\Delta\nu NH_2$  difference of the free species (Table 1). Therefore, the discussed peaks can be assigned to  $\nu_{as} NH_2$  and  $\nu_s NH_2$ , respectively, of the non-hydrogen-bonded amino group<sup>15</sup>.

- A new absorption maximum at about  $3370\text{-}3360\text{ cm}^{-1}$  appears on increasing the solute concentration (Table 1). The effect is clearly perceptible of the spectrum of 5 M solution (Fig. 3).


The results are in agreement with the assumption that in carbon tetrachloride and chloroform solutions 2-AP forms *chain like (open)* dimers (II). In this case the discussed band pair at about  $3480\text{ cm}^{-1}$  and  $3380\text{ cm}^{-1}$  corresponds to the non-hydrogen-bonded  $NH_2$  group. Since the other amino



group contains only one hydrogen atom involved in hydrogen bonding, the belonging  $\nu_s NH_2$  band should be strongly low-frequency shifted. The  $\nu_s NH_2$  values between  $3230\text{ cm}^{-1}$  and  $3240\text{ cm}^{-1}$  (Table 1), calculated from the Fermi-resonance doublets, is in agreement with this suggestion. The




**Fig. 2.** Curve fitting ( $3550\text{-}3100\text{ cm}^{-1}$ ) of the 2-AP IR-spectrum,  
0.1 M solution in carbon tetrachloride



**Fig. 3.** Curve fitting ( $3550\text{-}3100\text{ cm}^{-1}$ ) of the 2-AP IR-spectrum,  
5 M solution in chloroform

corresponding antisymmetric  $\text{NH}_2$  vibration is weakly affected<sup>18, 20, 21, 23, 24</sup> and the respective band is not observed in the spectra of low-concentration 2-AP solutions because of a strong overlapping with the  $\nu_{as}$   $\text{NH}_2$  absorption maximum of the non-bonded dimeric  $\text{NH}_2$  group (Fig. 2). With increasing concentration of the dimeric species the respective peak at  $3465\text{--}3445\text{ cm}^{-1}$  is resolved (Fig. 3 and Table 1).



The appearance of a new band in the 3370-3360  $\text{cm}^{-1}$  region at higher solute concentration indicates that under these conditions 2-AP also forms some amount of higher order (mainly trimeric) self-associates (Fig. 3 and Table 1). Two possible structures could be considered: the symmetric (III) or head-to tail associates (IV). The eventual formation of (III) where both the hydrogen atoms of the amino group are hydrogen bonded, should mostly affect the antisymmetric  $\text{NH}_2$  stretching frequency and the discussed absorption maximum can be attributed to this mode. Moreover, the  $\nu_s \text{NH}_2$  and consequently the Fermi-resonance caused band splitting should show almost the same values as well as in the case of the dimeric species (II)<sup>20, 21, 23, 24</sup>. These suggestions concur with the previously reported results about the IR-spectra of 1:2 adducts of primary amines with trimethyl-, triethyl-

and tri-n-propylamine as proton acceptors<sup>19, 21</sup> and are additionally assumed by our IR-spectral study of 2-AP in triethylamine (Fig. 4 and Table 1). Because of the steric hindrance of the bulky triethyl group of the solvent, some amount of non-solvated solute is present and the spectrum exhibits the corresponding weak-intensity bands at 3508  $\text{cm}^{-1}$  and 3407  $\text{cm}^{-1}$  (Fig. 4). Since the triethylamine is low-polar<sup>25</sup>, the absorption maxima are not solvatochromically affected (compare with Fig 1.2). The band at 3480  $\text{cm}^{-1}$  ( $\nu_{as} \text{NH}_2$ ) as well as the Fermi-doublet at 3314  $\text{cm}^{-1}$  and 3174  $\text{cm}^{-1}$  ( $\nu_s \text{NH}_2$ ), characterize the 1:1 adduct of 2-AP and triethylamine. The peak at 3370  $\text{cm}^{-1}$  should be assigned to the presence of trimeric associates (1:2 adducts).

We have verified the alternative assumption of structure (IV) formation in 2-AP solutions by a comparative IR-spectral study of 3-AP. The X-ray data<sup>26</sup> of the crystalline compound demonstrate that 3-AP molecules are chain-linked to each other by (H)NH...N(Py) hydrogen bonds and this head-to-tail association forms infinite chains parallel to one of the crystallographic axes.

The solid state 3-AP IR-spectrum is given in Fig. 5.1. The Fermi-doublet at 3306  $\text{cm}^{-1}$  and 3158  $\text{cm}^{-1}$  ( $\nu_s \text{NH}_2$ ), and particularly the band at 3377  $\text{cm}^{-1}$  ( $\nu_{as} \text{NH}_2$ ) characterize the head-to-tail hydrogen bonded units of 3-AP which are structurally analogous to the central 2-AP molecule of Scheme (IV). The melting of the 3-AP sample breaks the infinite chains and this leads to intensity decrease of the 3377  $\text{cm}^{-1}$  absorption maximum and high-frequency shift of the Fermi-doublet peaks. Simultaneously, additional bands appear in the 3465-3390  $\text{cm}^{-1}$  range (Fig. 5.2), which should be assigned to  $\text{NH}_2$  modes of the final units of broken 3-AP chains. These units are included in chain residues through hydrogen bonded amino groups of "dimeric type"

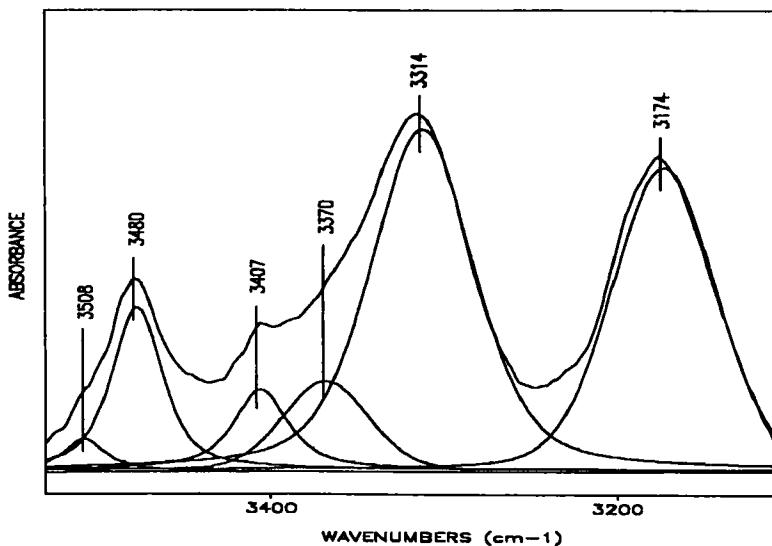



Fig. 4. Curve fitting ( $3500$ - $3100\text{ cm}^{-1}$ ) of the 2-AP IR-spectrum,  
0.1 M solution in triethylamine

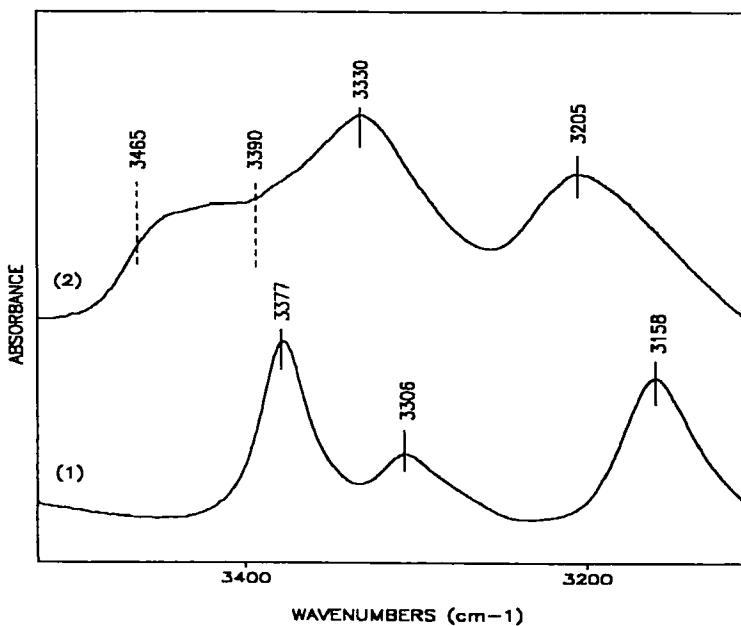
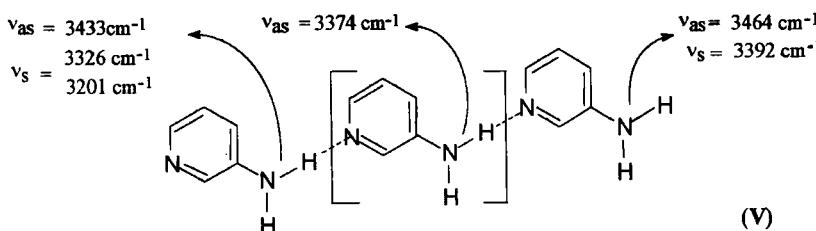




Fig. 5. IR-spectra of 3-AP: solid state, Nujol mull (1); liquid, melt (2);

(Scheme V), analogous of the outside 2-AP units in Scheme (IV). The IR-spectrum curve fitting of 5M 3-AP solution in chloroform resolves the discussed maxima (Fig. 6). The additional bands at  $3486\text{ cm}^{-1}$  and  $3401\text{ cm}^{-1}$  should be attributed to the  $\nu_{as}$   $NH_2$  and  $\nu_s$   $NH_2$  vibrations of the monomeric 3-AP, respectively, and the data obtained for high-diluted 3-AP chloroform solutions confirm this suggestion. The assignment of the other bands is given in Scheme (V).



The results stated above suggest that the presence of  $3370\text{-}3360\text{ cm}^{-1}$  band is typical of both 2-AP structures (III) and (IV), and it is not characteristic for their identification. However, the pointed similarity between the 2-AP and 3-AP IR-spectra illustrated in Figs. 3 and 6, respectively, indicates that 2-AP forms *head-to-tail* self-associates. The same conclusion is obtained by comparing the spectra of melted 3-AP- and 2-AP samples (Figs. 5.2 and 7.1). Like 3-AP, the corresponding 2-AP IR-spectrum exhibits absorption maxima at  $3465\text{ cm}^{-1}$  and  $3390\text{ cm}^{-1}$  (Fig. 7.1, compare with Fig. 5.2), characteristic of the final units in chain-linked self-associates. These bands disappear after crystallizing of the melt where the peak at  $3446\text{ cm}^{-1}$  which is typical of 2-AP cyclic dimmers (I) comes to the fore (Fig. 7.2).

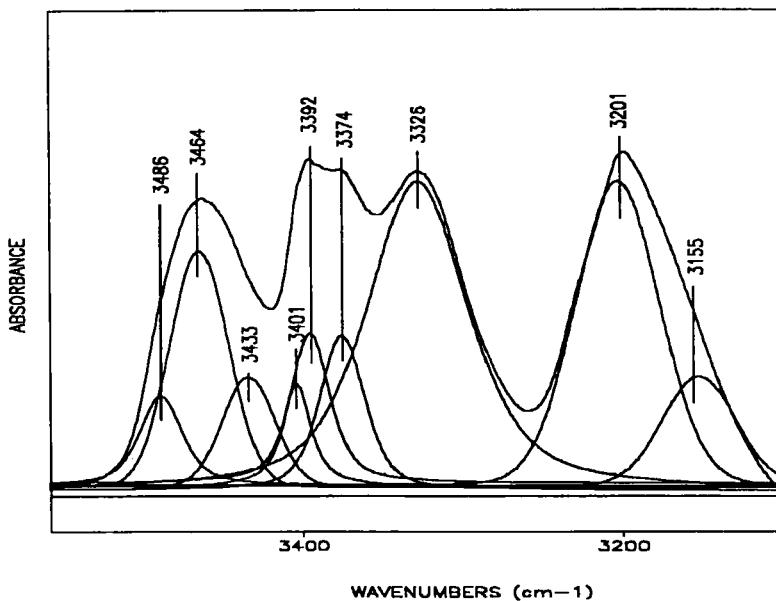



Fig. 6. Curve fitting (3550-3100 cm<sup>-1</sup>) of the 3-AP IR-spectrum,  
5 M solution in chloroform

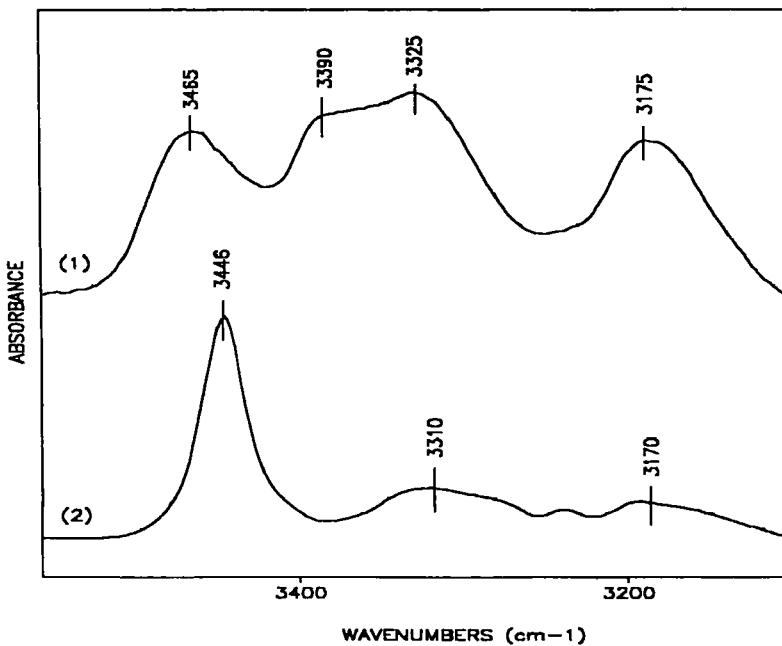



Fig. 7. IR-spectra of 2-AP: liquid, melt (1); solid state, from melt (2)

## CONCLUSIONS

The study carried out proves that 2-AP forms chain-like self-associates in solutions, in contrast to solid state where cyclic dimer structure takes place. This result applies to the liquid 2-AP too.

## ACKNOWLEDGMENTS

The financial support from the National Foundation for Promotion of Science (Project No X-310) is gratefully acknowledged.

## REFERENCES

1. Arnaudov M., Dinkov Sh, Shishkova L., Pindeva L., Petrov H. and Dobreva E. IR- and UV-spectral study of palladium (II) complexes with 2-aminopyridine obtained in sulphuric acid and alkaline solutions. *Spectrosc. Lett.* 1997; 30: 1595.
2. Dinkov Sh. and Arnaudov M. IR- and UV-spectral study on the mechanism of 2-aminopyridine complexation with palladium (II). *Spectrosc. Lett.* 1998; 31 (3) (in press).
3. Dega-Szafran Z., Kania A., Nowak-Widra B. and Szafran M., UV, <sup>1</sup>H and <sup>13</sup>C NMR spectra, and AM1 studies of protonation of aminopyridines. *J. Mol. Structure* 1994; 322: 223.
4. Chao M., Schempp E. and Rosenstein R.D. 2-Aminopyridine. *Acta Cryst.* 1975; B31: 2922.
5. Ramiah K.V. and Puranik P.G. Infrared spectroscopic studies of the association of amino-pyridines. *J. Mol. Spectrosc.* 1961; 7: 89.
6. Berezin V. and El'kin M. Kolebatel'nye spektry i geometricheskaya struktura anilina,  $\alpha$ -,  $\beta$ -,  $\gamma$ -aminopiridinov. *Optika i spektrosk.* 1974; 36: 905.
7. Angyal C.L. and Werner R.L. The tautomerism of N-heteroaromatic amines. Part II. Infra-red spectroscopic evidence. *J. Chem. Soc.* 1952: 2911.

8. Spinner E. The vibration spectra and structures of the hydrochlorides of aminopyridines. *J. Chem. Soc.* 1962; 3119.
9. Goulden J.D.S. The structure of the aminopyridines. *J. Chem. Soc.* 1952; 2939.
10. Katritzky A.R. and Hands A.R. Infrared studies of heterocyclic compounds. Part II. 2-monosubstituted pyridines. *J. Chem. Soc.* 1958; 2202.
11. Mason S.F. The frequencies and intensities of the N-H stretching vibrations in primary amines. *J. Chem. Soc.* 1958; 3619.
12. Thompson W.K. Infrared absorption spectra of dimethyl sulphoxide solutions. Part I. Heterocyclic amines. *J. Chem. Soc.* 1962; 617.
13. Yagudaev M.R. and Schejnker Yu.N. Integral'naya intensivnost' polos deformatsionnyh kolebanij pervichnoj amino-gruppy. *Dokl. Akad. Nauk SSSR, ser. Fiz. Khim.* 1962; 144: 177.
14. Yagudaev M.R., Popov E.M., Yakovlev I.P. and Schejnker Yu.N. Chastoty i intensivnosti infrakrasnyh polos poglostcheniya valentnyh i deformatsionnyh kolebanij gruppy NH<sub>2</sub> v pervichnyh aminah. *Izv. Akad. Nauk SSSR, ser. Khim.* 1964; 7: 1189.
15. Bellamy L.J. and Pace R.J. The effects of non-equivalent hydrogen bonding on the stretching frequencies of primary amines and of water. *Spectrochim. Acta*, 1972; 28A: 1869.
16. Sugeta H. Spectrophotometric determination of formation constants and estimation of molar absorption spectra of individual components in chemical equilibria. Infrared study of intermolecular hydrogen bonding of 2-aminopyridine. *Bull. Chem. Soc. Jpn.* 1981; 54:3706.
17. Weckherlin S. und Lüttke W. Infrarotspektroskopische Untersuchungen an isotopen Stickstoff-Verbindungen. 2. Mitteilung: Das Schwingungsspektrum des Benzamids. *Z. Elektrochem.* 1960; 64: 1228.
18. Wolff H. und Staschewski D. Raman spectroskopische Untersuchungen der flüssigen primären aliphatischen Aminen. 2. Mitteilung. Eingehendere Deutung der an den NH-Valenzbanden gewonnenen Ergebnisse. *Z. Electrochem., Ber. Bunsen-ges. Phys. Chem.* 1962; 66: 140.
19. Wolff H. und Eints J. Ultrarotuntersuchungen der Assoziation von primären mit tertiären aliphatischen Aminen. *Ber. Bunsenges. Phys. Chem.* 1966; 70: 728.

20. Wolff H. und Horn D. Über die Fermi-Rezonanz bei der Wasserstoffbrückenassoziation primärer aliphatischer Amine. Ber. Bunsenges. Phys. Chem. 1968; 72: 419.
21. Wolff H. und Horn D. Ultrarotspektroskopische Untersuchungen der Wasserstoffbrückenassoziation von 2,2,2-trifluoräthylamin. 1. Mitteilung. Die Meßergebnisse und ihre elementare Deutung. Ber. Bunsenges. Phys. Chem 1967; 71:467.
22. Wolff H. and Mathias D. Hydrogen bonding and Fermi resonance of aniline. J. Phys. Chem. 1973; 77: 2081.
23. Lauransan J., Pineau P. et Josien M.-L. Étude par spectroscopie infrarouge des associations moléculaires entre la parabromaniline et divers solvants. Ann. Chim. 1964; 9: 213.
24. Lauransan J., Corset J. et Forel M.-T. Application du calcul de vibration à l'étude par spectrométrie infrarouge des complexes formée par liaison hydrogène entre les groupements  $XH_2$  ou  $XH_3$  et divers accepteurs de proton. Ann. Chim. 1968; 3: 109.
25. Abboud J.-L. M., Taft R.W. An interpretation of a general scale of solvent polarities. A simplified reaction field theory modification. J. Phys. Chem. 1979; 83: 412.
26. Chao M., Schempp E. and Rosenstein R.D. 3-Aminopyridine. Acta Cryst. 1975; B31: 2924.

Date Received: June 2, 1998  
Date Accepted: July 13, 1998